INTRODUCTION TO OPENCL

HAIBO XIE, PH.D.
haibo.xie@amd.com
AGENDA

- What’s OpenCL
- Fundamentals for OpenCL programming
- OpenCL programming basics
- OpenCL programming tools
- Examples & demos
WHAT IS OPENCL

Open Computing Language (OpenCL) is a framework

- For writing parallel computing programs that execute across heterogeneous platforms

OpenCL is a programming model

- To fulfill parallel computing thought in the Heterogeneous Computing era

OpenCL includes

- Language for writing Kernels
- APIs to use and control the platform
- Compilers for cross-platform binary generation

OpenCL is an open standard
ARCHITECTURE EVOLUTION

Single-Core Era

Enabled by:
- ✓ Moore’s Law
- ✓ Voltage Scaling

Constrained by:
- ✗ Power
- ✗ Complexity

Multi-Core Era

Enabled by:
- ✓ Moore’s Law
- ✓ SMP architecture

Constrained by:
- ✗ Power
- ✗ Parallel SW
- ✗ Scalability

Heterogeneous Systems Era

Enabled by:
- ✓ Abundant data parallelism
- ✓ Power efficient GPUs

Temporarily Constrained by:
- ✗ Programming models
- ✗ Comm. overhead

Single-Thread Performance

Throughput Performance

Modern Application Performance

we are here

we are here

we are here

Time

Time (# of processors)

Time (Data-parallel exploitation)
PROGRAMMING MODEL EVOLUTION

Single-Core Era
- Enabled by:
 - ✓ Moore’s Law
 - ✓ Voltage Scaling
- Constrained by:
 - ❌ Power
 - ❌ Complexity
- Assembly ➔ C/C++ ➔ Java ...

Multi-Core Era
- Enabled by:
 - ✓ Moore’s Law
 - ✓ SMP architecture
- Constrained by:
 - ❌ Power
 - ❌ Parallel SW
 - ❌ Scalability
- pthreads ➔ OpenMP / TBB ...

Heterogeneous Systems Era
- Enabled by:
 - ✓ Abundant data parallelism
 - ✓ Power efficient GPUs
- Temporarily Constrained by:
 - Programming models
 - Comm. overhead
- Shader ➔ CUDA ➔ OpenCL ➔ C++
 - AMP ➔ Java

Assembly ➔ C/C++ ➔ Java ...

pthreads ➔ OpenMP / TBB ...

Shader ➔ CUDA ➔ OpenCL ➔ C++
 - AMP ➔ Java
WHAT’S HETEROGENEOUS COMPUTING

Heterogeneous computing systems refer to electronic systems that use a variety of different types of computational units with different instruction set architectures (ISAs).

Compute units are:
- General-purpose processor
 - Multi-core CPUs
- Special-purpose processor
 - Graphics Processing Unit (GPU)
 - Digital Signal Processor (DSP)
 - Field-Programmable Gate Array (FPGA)
 - Custom acceleration logic (application-specific integrated circuit (ASIC))
TYPICAL HETEROGENEOUS SYSTEM – CPU + dGPU

CPU + dGPU

Common form factor of recent GPGPU
2-16 x86 cores
1-4 GPU cards
Tens of TFLOPS

Distributed memory system between CPU and GPU
PCI-E communication as a bottleneck
Very fine granularity parallelism needed
Expert programmer but better learning curve than Cell B.E
Kinds of programming model supported, CG/CUDA/OpenCL/C++ AMP
TYPICAL HETEROGENEOUS SYSTEM – AMD HSA APU

AMD APU, codename Kevari

Third generation APU chip
Up to 4 x86 general purpose core
Combine GPU into the single die
More than 1TFLOPS single precision float operation

Unified memory system between CPU and GPU
Industry standard programming model – OpenCL
Kinds of high level programming languages support, C/C++/Java, etc
Way to future Full HSA enablement.
EVOLUTION OF HETEROGENEOUS COMPUTING

Proprietary Drivers Era
- Graphics & Proprietary Driver-based APIs
 - “Adventurous” programmers
 - Exploit early programmable “shader cores” in the GPU
 - Make your program look like “graphics” to the GPU
 - CUDA™, Brook+, etc

Standards Drivers Era
- OpenCL™, DirectCompute Driver-based APIs
 - Expert programmers
 - C and C++ subsets
 - Compute centric APIs, data types
 - Multiple address spaces with explicit data movement
 - Specialized work queue based structures
 - Kernel mode dispatch

Architected Era
- Heterogeneous System Architecture GPU Peer Processor
 - Mainstream programmers
 - Full C++
 - GPU as a co-processor
 - Unified coherent address space
 - Task parallel runtimes
 - Nested Data Parallel programs
 - User mode dispatch
 - Pre-emption and context switching

2002 - 2008
2009 - 2011
2012 - 2020

Architecture Maturity & Programmer Accessibility
- Poor
- Excellent
GPU compute capability is more than 10X that of the CPU

OpenCL is about to release GPU device computing horsepower
Open Standard
Cross Platform
Multi-Vendor
Royalty Free
Broad ISV Support

OpenCL™ is a programming framework for heterogeneous compute resources
AN OPENCL STANDARD

Over 100 companies creating visual computing standards

Board of Promoters
APIS for Current Multi-Threaded Development

<table>
<thead>
<tr>
<th>Which of the following do you program with today?</th>
<th>Count</th>
<th>Percent of Responses</th>
<th>Percent of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenMP</td>
<td>91</td>
<td>13.9</td>
<td>31.1</td>
</tr>
<tr>
<td>OpenCL</td>
<td>81</td>
<td>12.4</td>
<td>27.6</td>
</tr>
<tr>
<td>Intel Threading Building Blocks</td>
<td>72</td>
<td>11.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Intel Parallel Building Blocks</td>
<td>65</td>
<td>10.0</td>
<td>22.2</td>
</tr>
<tr>
<td>CUDA</td>
<td>59</td>
<td>9.0</td>
<td>20.1</td>
</tr>
<tr>
<td>Intel Cilk Plus</td>
<td>56</td>
<td>8.6</td>
<td>19.1</td>
</tr>
<tr>
<td>MPI</td>
<td>50</td>
<td>7.7</td>
<td>17.1</td>
</tr>
<tr>
<td>Co Array Fortran</td>
<td>34</td>
<td>5.2</td>
<td>11.6</td>
</tr>
<tr>
<td>Other</td>
<td>145</td>
<td>22.2</td>
<td>49.5</td>
</tr>
<tr>
<td>Total Responses</td>
<td>653</td>
<td>100</td>
<td>222.9</td>
</tr>
</tbody>
</table>

Note that this multiple response question allowed the developers to select as many responses as they wished, and thus the total number of cases will not come to 100%. The response column shows the percent of total responses, while the case column shows the percent of actual developers (cases) who responded.
LINES-OF-CODE AND PERFORMANCE
WITH DIFFERENT PROGRAMMING MODEL

(Exemplary ISV “Hessian” Kernel)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Launch</th>
<th>Copy-back</th>
<th>Compile</th>
<th>Copy</th>
<th>Init</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial CPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrinsic+TBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenCL™-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenCL™-C++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C++ AMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSA Bolt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.
Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta.
AGENDA

- What’s OpenCL
- Fundamentals for OpenCL programming
- OpenCL programming basics
- OpenCL programming tools
- Demos
FUNDAMENTALS FOR OPENCL PROGRAMMING

- **Parallel computing thinking**
 - Parallel computing thinking is a must-have for OpenCL programming on GPU devices which work as a many-core computing device

- **Knowledge of GPU architecture**
 - GPU has a quite different architectural philosophy against CPU

- **Ideas of controlling and cooperating heterogeneous devices**
 - Heterogeneous Computing is not like parallel computing on a SMP device
 - Developers should carefully control the different part of this system
 - And coordinate them smoothly
 - Will covered by OpenCL programming basics section
Parallelism describes the potential to complete multiple parts of a problem at the same time.

In order to exploit parallelism, we have to have the physical resources (i.e. hardware) to work on more than one thing at a time.

There are different types of parallelism that are important for GPU computing:

- Task parallelism – the ability to execute different tasks within a problem at the same time
- Data parallelism – the ability to execute parts of the same task (i.e. different data) at the same time
As an analogy, think about a farmer who hires workers to pick apples from an orchard of trees

- The workers that do the apple picking are the (hardware) processing elements
- The trees are the tasks to be executed
- The apples are the data to be operated on
The *serial* approach would be to have one worker pick all of the apples from each tree
– After one tree is completely picked, the worker moves on to the next tree and completes it as well
PARALLELISM

If the workers uses both of his arms to pick apples, he can grab two at once
- This represents data parallel hardware, and would allow each task to be completed quicker
- A worker with more than two arms could pick even more apples
If more workers were hired, each worker could pick apples from a different tree

- This represents task parallelism, and although each task takes the same time as in the serial version, many are accomplished in parallel.
For non-trivial problems, it helps to have more formal concepts for determining parallelism. When we think about how to parallelize a program, we use the concepts of decomposition:

- **Task decomposition**: dividing the algorithm into individual tasks (don’t focus on data)
 - In the previous example, the goal is to pick apples from trees, so clearing a tree would be a task.

- **Data decomposition**: dividing a data set into discrete chunks that can be operated on in parallel
 - In the previous example, we can pick a different apple from the tree until it is cleared, so apples are the unit of data.
Task decomposition reduces an algorithm to functionally independent parts

 Tasks may have dependencies on other tasks
 - If the input of task B is dependent on the output of task A, then task B is dependent on task A
 - Tasks that don’t have dependencies (or whose dependencies are completed) can be executed at any time to achieve parallelism
 - Task dependency graphs are used to describe the relationship between tasks
We can create a simple task dependency graph for baking cookies

- Any tasks that are not connected via the graph can be executed in parallel (such as preheating the oven and shopping for groceries)
For most scientific and engineering applications, data is decomposed based on the output data
- Each output pixel of an image convolution is obtained by applying a filter to a region of input pixels
- Each output element of a matrix multiplication is obtained by multiplying a row by a column of the input matrices

This technique is valid any time the algorithm is based on one-to-one or many-to-one functions

Input data decomposition is similar, except that it makes sense when the algorithm is a one-to-many function
- A histogram is created by placing each input datum into one of a fixed number of bins
- A search function may take a string as input and look for the occurrence of various substrings

For these types of applications, each thread creates a “partial count” of the output, and synchronization, atomic operations, or another task are required to compute the final result
The choice of how to decompose a problem is based solely on the algorithm.

However, when actually implementing a parallel algorithm, both hardware and software considerations must be taken into account.

There are both hardware and software approaches to parallelism.

Much of the 1990s was spent on getting CPUs to *automatically* take advantage of Instruction Level Parallelism (ILP)

- Multiple instructions (without dependencies) are issued and executed in parallel
- Automatic hardware parallelization will not be considered for the remainder of the lecture

Higher-level parallelism (e.g. threading) cannot be done automatically, so software constructs are required for programmers to tell the hardware where parallelism exists

- When parallel programming, the programmer must choose a programming model and parallel hardware that are suited for the problem
PARALLEL HARDWARE

Hardware is generally better suited for some types of parallelism more than others

<table>
<thead>
<tr>
<th>Hardware type</th>
<th>Examples</th>
<th>Parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-core superscalar processors</td>
<td>Phenom II CPU</td>
<td>Task</td>
</tr>
<tr>
<td>Vector or SIMD processors</td>
<td>SSE units (x86 CPUs)</td>
<td>Data</td>
</tr>
<tr>
<td>Multi-core SIMD processors</td>
<td>Radeon 7970 GPU</td>
<td>Data</td>
</tr>
</tbody>
</table>

Currently, GPUs are comprised of many independent “processors” that have SIMD processing elements

- One task is run at a time on the GPU
- *Loop strip mining* (next slide) is used to split a data parallel task between independent processors
- Every instruction must be data parallel to take full advantage of the GPU’s SIMD hardware
 - SIMD hardware is discussed later in the lecture
Loop strip mining is a loop-transformation technique that partitions the iterations of a loop so that multiple iterations can be:
- executed at the same time (vector/SIMD units),
- split between different processing units (multi-core CPUs),
- or both (GPUs)

An example with loop strip mining is shown in the following slides
GPU programs are called *kernels*, and are written using the Single Program Multiple Data (SPMD) programming model
- SPMD executes multiple instances of the same program independently, where each program works on a different portion of the data

For data-parallel scientific and engineering applications, combining SPMD with loop strip mining is a very common parallel programming technique
- Message Passing Interface (MPI) is used to run SPMD on a distributed cluster
- POSIX threads (pthreads) are used to run SPMD on a shared-memory system
- Kernels run SPMD within a GPU
Consider the following vector addition example:

```
for (i = 0:11) {
    C[i] = A[i] + B[i]
}
```

Serial program:
one program completes
the entire task

```
for (i = 0:3) {
    C[i] = A[i] + B[i]
}
for (i = 4:7) {
    C[i] = A[i] + B[i]
}
for (i = 8:11) {
    C[i] = A[i] + B[i]
}
```

SPMD program:
multiple copies of the
same program run on
different chunks of the
data

Combining SPMD with loop strip mining allows multiple copies of the same program execute on different data in parallel.
In the vector addition example, each chunk of data could be executed as an independent thread.

On modern CPUs, the overhead of creating threads is so high that the chunks need to be large.
- In practice, usually a few threads (about as many as the number of CPU cores) and each is given a large amount of work to do.

For GPU programming, there is low overhead for thread creation, so we can create one thread per loop iteration.
PARALLEL SOFTWARE – SPMD

Single-threaded (CPU)

// there are N elements
for(i = 0; i < N; i++)
C[i] = A[i] + B[i]

Multi-threaded (CPU)

// tid is the thread id
// P is the number of cores
for(i = 0; i < tid*N/P; i++)
C[i] = A[i] + B[i]

Massively Multi-threaded (GPU)

// tid is the thread id
Each processing element of a Single Instruction Multiple Data (SIMD) processor executes the same instruction with different data at the same time
– A single instruction is issued to be executed simultaneously on many ALU units
– We say that the number of ALU units is the width of the SIMD unit

SIMD processors are efficient for data parallel algorithms
– They reduce the amount of control flow and instruction hardware in favor of ALU hardware
PARALLEL HARDWARE – SIMD

- In the vector addition example, a SIMD unit with a width of four could execute four iterations of the loop at once.

- Relating to the apple-picking example, a worker picking apples with both hands would be analogous to a SIMD unit of width 2.

- All current GPUs are based on SIMD hardware:
 - The GPU hardware implicitly maps each SPMD thread to a SIMD “core”
 - The programmer does not need to consider the SIMD hardware for correctness, just for performance.
 - This model of running threads on SIMD hardware is referred to as Single Instruction Multiple Threads (SIMT).
CHALLENGES OF PARALLELIZATION

- On CPUs, hardware-supported atomic operations are used to enable concurrency
 - Atomic operations allow data to be read and written without intervention from another thread

- Some GPUs support system-wide atomic operations, but with a large performance trade-off
 - Usually code that requires global synchronization is not well suited for GPUs (or should be restructured)
 - Any problem that is decomposed using input data partitioning (i.e., requires results to be combined at the end) will likely need to be restructured to execute well on a GPU
PHILOSOPHY OF GPU ARCHITECTURE
FROM GENERAL PURPOSE COMPUTING PERSPECTIVE

CPU vs GPU: Latency vs Throughput
- CPU/multicore: optimized for latency
- GPU/manycore: optimized for throughput

Heterogeneous computing with GPGPU
- Latency-optimized cores for logic part
- Throughput-optimized cores for compute part
CPU VS. GPU

Memory access
- CPU is optimized to memory access latency
 - Take advantage of large amount of cache
- GPU is optimized to memory access bandwidth
 - Take advantage of “0” overhead thread switching, large amount of computing thread and quick switching hide the memory access latency and keep GPU core busy

Core
- CPU has heavy core which is good at complex data structure, branch, pre-fetch, fit for serial code; with SIMD and IPL, CPU cores are also fit for lightweight parallel computing
- GPU has large number of lightweight core, good at simple data layout, non-branch, fit for massive parallel computing
PARALLEL COMPUTING WITH MANY-CORE GPU DEVICES

▲ Massive parallel thinking
 – Not 4 threads or 16 threads with SIMD instruction extensions on CPU
 – Image tens of thousands threads are in flight on GPU device with “zero” thread creation and scheduling overhead
 – Enough parallelism is the key to explore the GPU horsepower
 – It’s more important for I/O sensitive algorithm
 – Carefully analysis the data dependency

▲ Scalability is the consequence to be carefully considered
 – Scalability is an important topic on SMP architecture, it’s more important on many-core GPU devices
 – Consider the overhead of inter-thread communication and atomic operation on GPU devices

▲ Design architecture-oriented algorithm instead of “text-book” algorithm
 – Like, consider the cycles of computing instruction and cycles of memory access, replace memory access with computing for performance speedup
THE NATURE OF CPU+GPU COMPUTING

CPU: scalar processing
- Latency
- Optimized for sequential and branching algorithms
- Single core performance
- Throughput

GPU: parallel processing
- Throughput computing
- High aggregate memory bandwidth
- Very high overall metal performance/watt
- Latency

CPU+GPU provides optimal performance combinations for a wide range of platform configurations.
PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM
A CASE STUDY – WITH 4 CORE CPU

Step 1: analysis on algorithm and application
Step 2: automatic parallelization or explicit parallelization
Step 3: task/data parallel?
Step 4: parallelism granularity
Step 5: dependency
Step 6: communication
Step 7: load balance

do j = 1,n
do i = 1,n
 a(i,j) = fcn(i,j)
end do
end do

Loop unrolling, partition data set to 4 cores with total 4 threads

do j = 1,n/4
 do i = 1,n
 a(i,j) = fcn(i,j)
 end do
end do

.....

do j = 3n/4+1, n
 do i = 1,n
 a(i,j) = fcn(i,j)
 end do
end do
PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM

A CASE STUDY – OPENMP ON 4 CORE CPU

Step 1: analysis on algorithm and application
Step 2: automatic parallelization or explicit parallelization
Step 3: task/data parallel?
Step 4: parallelism granularity
Step 5: dependency
Step 6: communication
Step 7: load balance

```
do j = 1,n
    do i = 1,n
        a(i,j) = fcn(i,j)
    end do
end do
```

Loop unrolling, openMP

```
#pragma omp parallel for
    do j = 1,n
        do i = 1,n
            a(i,j) = fcn(i,j)
        end do
    end do
```

A CASE STUDY – OPENMP ON 4 CORE CPU
PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM
A CASE STUDY – MOVE TO MASSIVE PARALLELISM

Step 1: analysis on algorithm and application
Step 2: automatic parallelization or explicit parallelization
Step 3: task/data parallel?
Step 4: parallelism granularity
Step 5: dependency
Step 6: communication
Step 7: load balance

do j = 1,n
 do i = 1,n
 a(i,j) = fcn(i,j)
 end do
end do

Loop unrolling with very fine-granularity

do j = 1,n
 do i = 1,n
 uint gidx = get_global_id(0);
 a[gidx] = fcn[gidx];
 end do
end do
PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM
A CASE STUDY – WITH GPU

Step 1: analysis on algorithm and application
Step 2: automatic parallelization or explicit parallelization
Step 3: task/data parallel?
Step 4: parallelism granularity
Step 5: dependency
Step 6: communication
Step 7: load balance

do j = 1,n
doi = 1,n
a(i,j) = fcn(i,j)
end do
doen

Loop unrolling with very fine-granularity

__kernel void fcn() {
 uint gidx = get_global_id(0);
a[gidx] = fcn[gidx];
}
A TYPICAL OPENCL CODE
HOST PART

Start

Initialize devices

Copy data to GPU

Execute GPU Kernel

Copy data back to CPU

Other instructions

int main(int argc, char ** argv)
{

 clGetPlatformIDs(numPlatforms, platforms, NULL);
 clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,
 devices, NULL);
 clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

 clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
 datasize, A, &status);
 clEnqueueWriteBuffer (myqueue , d_ip, CL_TRUE,0, mem_size, (void *)&src_image,
 0, NULL, NULL)

 clCreateProgramWithSource(context, 1, (const char**)&source, NULL, &status);
 clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
 clCreateKernel(program, "vecadd", &status);
 clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
 clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL,
 globalWorkSize, NULL, 0, NULL, NULL);

 clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, 0, datasize, C,
 0, NULL, NULL);

}

A TYPICAL OPENCL CODES

```c
int main(int argc, char ** argv)
{
    ......

    clGetPlatformIDs(numPlatforms, platforms, NULL);
    clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,
                    devices, NULL);
    clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

    clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
                    datasize, A, &status);
    clEnqueueWriteBuffer (myqueue, d_ip, CL_TRUE, 0, mem_size, (void *)src_image,
                           0, NULL, NULL)

    clCreateProgramWithSource(context, 1, (const char**)&source, NULL, &status);
    clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
    clCreateKernel(program, "vecadd", &status);
    clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
    clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL,
                            globalWorkSize, NULL, 0, NULL, NULL);

    clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, 0, datasize, C,
                         0, NULL, NULL);
    ......
}

__kernel void vecadd(__global int *A,
                     __global int *B,
                     __global int *C) {
    int idx = get_global_id(0);
}
```
AGENDA

- What’s OpenCL
- Fundamentals for OpenCL programming
- OpenCL programming basics
 - OpenCL architecture and platform
 - OpenCL key components and APIs
- OpenCL programming tools
- Demos
OPENCL ARCHITECTURE OVERVIEW

- OpenCL architecture abstracts the operation into four parts

- Platform model
 - Defines the OpenCL devices

- Execution model
 - Defines OpenCL devices actions and inter-actions

- Memory model
 - Defines data location and communications among OpenCL devices

- Programming model
 - Defines how different OpenCL devices working together for a single problem
The model consists of a host connected to one or more OpenCL devices
- A device is divided into one or more compute units
- Compute units are divided into one or more processing elements
- Each processing element maintains its own program counter

The host is whatever the OpenCL library runs on
- x86 CPUs for GPUs

Devices are processors that the library can talk to
- CPUs, GPUs, and generic accelerators

For AMD
- All CPUs are combined into a single device (each core is a compute unit and processing element)
- Each GPU is a separate device

Every vendor has their implementation of platform model, OpenCL API provides the details of platform information
EXECUTION MODEL

- **“Host” program and “Kernel”**
 - Host program is just a traditional CPU program consists of all OpenCL components
 - Kernel runs on the OpenCL devices to perform off-loaded computing workloads

- **“Context” is defined in host to control Kernel execution**
 - “Program” is the object to be JIT compiled into “Kernel” and executed on devices
 - “Memory” is the object as the data communication unit
 - “Command queue” is existing among host and devices to control devices behavior

- **Execution model defines how threads are organized in Kernel**
 - Each thread is a work-item
 - Work-items are organized as work-group
 - Work-groups are organized as a NDRRange
Memory model defines
- The type of memory objects
- The location of different memory objects

Two kinds of memory objects
- Buffer and image

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Constant</th>
<th>Local</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Dynamic allocation</td>
<td>Dynamic allocation</td>
<td>Dynamic allocation</td>
<td>No allocation</td>
</tr>
<tr>
<td></td>
<td>Read / Write access</td>
<td>Read / Write access</td>
<td>No access</td>
<td>No access</td>
</tr>
<tr>
<td>Kernel</td>
<td>No allocation</td>
<td>Static allocation</td>
<td>Static allocation</td>
<td>Static allocation</td>
</tr>
<tr>
<td></td>
<td>Read / Write access</td>
<td>Read-only access</td>
<td>Read / Write access</td>
<td>Read / Write access</td>
</tr>
</tbody>
</table>

Compute Device

Compute unit 1
- Private memory 1
 - PE 1
- Private memory M
 - PE M

Compute unit N
- Private memory 1
 - PE 1
- Private memory M
 - PE M

Global/Constant Memory Data Cache

Global Memory

Constant Memory

Compute Device Memory
The OpenCL execution model supports data parallel and task parallel programming models

Data parallel programming model

- One-to-one mapping between work-items and elements in a memory object
- Work-groups can be defined explicitly or implicitly (specify the number of work-items and OpenCL creates the work-groups)

Task Parallel Programming Model

- The OpenCL task parallel programming model defines a model in which a single instance of a kernel is executed independent of any index space
- Under this model, users express parallelism by:
 - Enqueuing multiple tasks, and/or
 - Enqueuing native kernels developed using a programming model orthogonal to OpenCL

Synchronization

- Possible between items in a work-group
- Possible between commands in a context command queue
From API definition point of view, OpenCL framework consists of three parts

OpenCL Platform layer
- The platform layer allows the host program to discover OpenCL devices and their capabilities and to create contexts
 - Platform, device, context

OpenCL Runtime
- The runtime allows the host program to manipulate
 - Command queue, memory objects, program, Kernel, kernel execution, event......

OpenCL Compiler
- The OpenCL compiler creates program executable that contain OpenCL kernels. The OpenCL C programming language implemented by the compiler supports a subset of the ISO C99 language with extensions for parallelism. contexts once they have been created
OPENCL PROGRAMMING DIAGRAM

Select a platform → Initialize devices → Copy data to GPU → Execute GPU Kernel → Copy data back to CPU → Other instructions

Start

Select devices → Create context → Command queue → Memory objects → Create and build program → Create and execute Kernel → Release objects

int main(int argc, char ** argv)
{

 cGetPlatformIDs(numPlatforms, platforms, NULL);
 cGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
 cCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

 cCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, dataSize, &status);
 clEnqueueWriteBuffer(queue, d_ip, CL_TRUE, 0, mem_size, (void *)src_image, 0, NULL, NULL);

 cCreateProgramWithSource(context, 1, (const char **)&source, NULL, &status);
 cBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
 cCreateKernel(program, "vecAdd", &status);
 clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
 clEnqueueNDRangeKernel(queue, kernel, 1, NULL, globalWorkSize, NULL, 0, NULL, NULL);

 clEnqueueReadBuffer(queue, d_C, CL_TRUE, 0, dataSize, c, 0, NULL, NULL);

}

PUBLIC
This function is usually called twice
- The first call is used to get the number of platforms available to the implementation
- Space is then allocated for the platform objects
- The second call is used to retrieve the platform objects

Once a platform is selected, we can then query for the devices that it knows how to interact with

We can specify which types of devices we are interested in (e.g. all devices, CPUs only, GPUs only)

This call is performed twice as with clGetPlatformIDs
- The first call is to determine the number of devices, the second retrieves the device objects
A context refers to the environment for managing OpenCL objects and resources.

To manage OpenCL programs, the following are associated with a context:

- Devices: the things doing the execution
- Program objects: the program source that implements the kernels
- Kernels: functions that run on OpenCL devices
- Memory objects: data that are operated on by the device
- Command queues: mechanisms for interaction with the devices
 - Memory commands (data transfers)
 - Kernel execution
 - Synchronization
CREATE CONTEXT

- When you create a context, you will provide a list of devices to associate with it
 - For the rest of the OpenCL resources, you will associate them with the context as they are created
A command queue is the mechanism for the host to request that an action be performed by the device
- Perform a memory transfer, begin executing, etc.

A command queue establishes a relationship between a context and a device
A separate command queue is required for each device
Commands within the queue can be synchronous or asynchronous
Command queues associate a context with a device
- Despite the figure below, they are not a physical connection
MEMORY OBJECTS

```c
cl_mem clCreateBuffer(cl_context context,
                      cl_mem_flags flags,
                      size_t size,
                      void *host_ptr,
                      cl_int *errcode_ret)
```

- Memory objects are OpenCL data that can be moved on and off devices for the given context
 - Objects are classified as either buffers or images

- **Buffers**
 - Contiguous chunks of memory – stored sequentially and can be accessed directly (arrays, pointers, structs)
 - Read/write capable

- **Images**
 - Opaque objects (2D or 3D)
 - Can only be accessed via read_image() and write_image()
 - Can either be read or written in a kernel, but not both
Memory objects are associated with a context
- They must be explicitly transferred to devices prior to execution

Uninitialized OpenCL memory objects—the original data will be transferred later to/from these objects

Original input/output data
(not OpenCL memory objects)
OpenCL provides commands to transfer data to and from devices

- `clEnqueue{Read|Write}{Buffer|Image}`
- Copying from the host to a device is considered *writing*
- Copying from a device to the host is *reading*

The write command both initializes the memory object with data and places it on a device

- The validity of memory objects that are present on multiple devices is undefined by the OpenCL spec (i.e. are vendor specific)

OpenCL calls also exist to directly map part of a memory object to a host pointer
Memory objects are transferred to devices by specifying an action (read or write) and a command queue. The validity of memory objects that are present on multiple devices is undefined by the OpenCL spec (i.e., is vendor specific).

Images are written to a device. The images are redundant here to show that they are both part of the context (on the host) and physically on the device.
A program object is basically a collection of OpenCL kernels
- Can be source code (text) or precompiled binary
- Can also contain constant data and auxiliary functions

Creating a program object requires either reading in a string (source code) or a precompiled binary

To compile the program
- Specify which devices are targeted
 - Program is compiled for each device
- Pass in compiler flags (optional)
- Check for compilation errors (optional, output to screen)
A program object is created and compiled by providing source code or a binary file and selecting which devices to target.
Creating Programs and Compiling Programs

- The program object is created from strings of source code, JIT capability.
- The program object also can be created from a compiled executable binary.

- If a program fails to compile, OpenCL requires the programmer to explicitly ask for compiler output:
 - A compilation failure is determined by an error value returned from `clBuildProgram()`.
 - Calling `clGetProgramBuildInfo()` with the program object and the parameter `CL_PROGRAM_BUILD_STATUS` returns a string with the compiler output.
A kernel is a function declared in a program that is executed on an OpenCL device
- A kernel object is a kernel function along with its associated arguments
- Kernel objects are created from a program object by specifying the name of the kernel function

Must explicitly associate arguments (memory objects, primitives, etc) with the kernel object
There is a high overhead for compiling programs and creating kernels
- Each operation only has to be performed once (at the beginning of the program)
- The kernel objects can be reused any number of times by setting different arguments
SETTING KERNEL ARGUMENTS

Kernel arguments are set by repeated calls to `clSetKernelArg`

- Memory objects and individual data values can be set as kernel arguments

```c
cl_int clSetKernelArg(cl_kernel kernel,
        cl_uint arg_index,
        size_t arg_size,
        const void *arg_value)
```
EXECUTING THE KERNEL

- Need to set the dimensions of the index space, and (optionally) of the work-group sizes
- Kernels execute asynchronously from the host
 - `clEnqueueNDRangeKernel` just adds it to the queue, but doesn’t guarantee that it will start executing
- A thread structure defined by the index-space that is created
 - Each thread executes the same kernel on different data

An index space of threads is created (dimensions match the data)
EXECUTING THE KERNEL

- Tells the device associated with a command queue to begin executing the specified kernel
- The global (index space) must be specified and the local (work-group) sizes are optionally specified
- A list of events can be used to specify prerequisite operations that must be complete before executing
Massively parallel programs are usually written so that each thread computes one part of a problem
- For vector addition, we will add corresponding elements from two arrays, so each thread will perform one addition
- If we think about the thread structure visually, the threads will usually be arranged in the same shape as the data

Consider a simple vector addition of 16 elements
- 2 input buffers (A, B) and 1 output buffer (C) are required

Vector Addition:

$$A + B = C$$

Array Indices

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Create thread structure to match the problem
- 1-dimensional problem in this case

Thread structure:

Vector Addition:

\[
\begin{align*}
A & \\
+ & \\
B & \\
= & \\
C &
\end{align*}
\]
Each thread is responsible for adding the indices corresponding to its ID.

Thread structure:

Vector Addition:

\[A + B = C \]
THREAD STRUCTURE

- OpenCL’s thread structure is designed to be scalable
- Each instance of a kernel is called a work-item (though “thread” is commonly used as well)
- Work-items are organized as work-groups
 - Work-groups are independent from one-another (this is where scalability comes from)
- An index space defines a hierarchy of work-groups and work-items
- Work-items can uniquely identify themselves based on:
 - A global id (unique within the index space)
 - A work-group ID and a local ID within the work-group
Thread Structure

- API calls allow threads to identify themselves and their data
- Threads can determine their global ID in each dimension
 - `get_global_id(dim)`
 - `get_global_size(dim)`
- Or they can determine their work-group ID and ID within the workgroup
 - `get_group_id(dim)`
 - `get_num_groups(dim)`
 - `get_local_id(dim)`
 - `get_local_size(dim)`
The OpenCL memory model defines the various types of memories (closely related to GPU memory hierarchy)

- Memory management is explicit
 - Must move data from host memory to device global memory, from global memory to local memory, and back
- Work-groups are assigned to execute on compute-units
 - No guaranteed communication/coherency between different work-groups (no software mechanism in the OpenCL specification)

<table>
<thead>
<tr>
<th>Memory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>Accessible by all work-items</td>
</tr>
<tr>
<td>Constant</td>
<td>Read-only, global</td>
</tr>
<tr>
<td>Local</td>
<td>Local to a work-group</td>
</tr>
<tr>
<td>Private</td>
<td>Private to a work-item</td>
</tr>
</tbody>
</table>
WRITING A KERNEL

- One instance of the kernel is created for each thread

Kernels:
- Must begin with keyword __kernel
- Must have return type void
- Must declare the address space of each argument that is a memory object (next slide)
- Use API calls (such as get_global_id()) to determine which data a thread will work on

Address Space Identifiers:
- __global, memory allocated from global address space
- __constant, a special type of read-only memory
- __local, memory shared by a work-group
- __private, private per work-item memory
- __read_only/__write_only, used for images

Kernel arguments that are memory objects must be global, local, or constant
A TYPICAL OPENCL CODES

```c
int main(int argc, char ** argv)
{
    ..... 

    clGetPlatformIDs(numPlatforms, platforms, NULL);
    clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices, devices, NULL);
    clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

    clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, datasize, A, &status);
    clEnqueueWriteBuffer (myqueue, d_ip, CL_TRUE,0, mem_size, (void *)src_image, 0, NULL, NULL);

    clCreateProgramWithSource(context, 1, (const char**)&source, NULL, &status);
    clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
    clCreateKernel(program, "vecadd", &status);
    clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
    clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, NULL, 0, NULL, NULL);

    clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, 0, datasize, C, 0, NULL, NULL);
    ..... 
}
```

```c
__kernel void vecadd(__global int *A, 
   __global int *B, 
   __global int *C) {
    int idx = get_global_id(0);
}
```
COPYING DATA BACK

- The last step is to copy the data back from the device to the host
- Similar call as writing a buffer to a device, but data will be transferred back to the host

Copied back from GPU
RELEASING RESOURCES

- Most OpenCL resources/objects are pointers that should be freed after they are done being used
- There is a clRelase{Resource} command for most OpenCL types
 - Ex: clReleaseProgram(), clReleaseMemObject()
COMPILING AND RUNNING OPENCL APPLICATION

- Host program is compiled by traditional compiler
 - gcc, MSVC++

- Kernel is compiled by OpenCL compiler
 - Both CPU and GPU computing device shares the same front-end (LLVM extension for OpenCL)
 - LLVM AS generates x86 binary
 - LLVM IR-to-AMD IL generates AMD GPU binary
 - Can be JIT for cross-platform

- Running OpenCL application
 - For CPU as computing device, OpenCL runtime automatically determines the number of processing elements
 - For GPU as computing device, Kernel runs as the exact instructions
AGENDA

- What’s OpenCL
- Fundamentals for OpenCL programming
- OpenCL programming basics
- OpenCL programming tools
- Demos
COMPLETE TOOL-CHAIN FOR OEP CNL PROGRAMMING

», AMD APP SDK
– SDK for OpenCL programming
– Includes header files, libraries, compiler and sample codes

», AMD CodeXL
– All-in-one debugger and profiler for OpenCL programming
– With AMD Kernel Analyzer
 – Static OpenCL Kernel performance analyzer
 – Expose IL and ISA of various GPU platform

», Library
– Bolt, a C++ template library
– AMD clAmdBlas, AMD clAmdFFT, Aparapi
– clMAGMA, OpenCV, etc......
AMD CodeXL is the all-in-one tool for
- Powerful GPU debugging
- Comprehensive GPU and CPU profiling
- Static OpenCL™ kernel analysis capabilities

AMD CodeXL is available both as a Visual Studio® extension and a standalone user interface application for Windows® and Linux®.
CPU PROFILING KEY FEATURES AND BENEFITS

Diagnose performance issues in hot-spots

- AMD CodeXL uses hardware-level performance counters and instruction-based sampling to provide valuable clues about inefficient program behavior.
- Use rates and ratios to quickly measure the efficiency of functions, loops and program statements.
CPU PROFILING KEY FEATURES AND BENEFITS

▲ Analyze Call Chain relationships

- Diagnose issues from a caller / callee relationship perspective.
- Quickly determine which call trees are using the most resources (time or events) to isolate potential optimization opportunities.
CPU PROFILING KEY FEATURES AND BENEFITS

- Supports multi-core Windows and Linux platforms
 - AMD CodeXL supports all of the latest AMD processors on both Windows and Linux platforms.
CPU PROFILING KEY FEATURES AND BENEFITS

Extends Microsoft Visual Studio
- Microsoft Visual Studio user can analyze their programs without leaving the Visual Studio environment.
- The AMD CodeXL Visual Studio plug-in provides all of the profiling features supported by the stand-alone AMD CodeXL for Windows GUI-based tool.
GPU DEBUGGING KEY FEATURES AND BENEFITS

Real-time OpenCL and OpenGL API-level debugging
– Allows locating API function calls and the code paths that led to them
GPU DEBUGGING KEY FEATURES AND BENEFITS

Online OpenCL kernel debugging
- Works with present hardware.
 Requires no special configuration or changes to the code. Develop and debug on a single computer with just one GPU. Step through the workflow of a single work item or compare values across all work items.
Full integration with Visual Studio

- Now API-level debugging is performed inside the Visual Studio source editor. If OpenCL kernel source code .cl files are included in the project, they will be identified and used for kernel debugging. In addition, Visual Studio views such as the call stack view and locals view will be filled with kernel debugging information.
GPU DEBUGGING KEY FEATURES AND BENEFITS

API statistics view

- Gives an overview of OpenCL and OpenGL API usage, and more detailed views, including unrecommended function calls (with alternative suggestions) and deprecated behavior.
GPU DEBUGGING KEY FEATURES AND BENEFITS

- Object visualization
 - View and export OpenCL buffers and Images and OpenGL Textures and buffers as pictures or as spreadsheet data.
GPU PROFILING KEY FEATURES AND BENEFITS

- **Collect OpenCL™ Application Trace**
 - View and debug the input parameters and output results for all OpenCL™ API calls
 - Search the API calls
 - Navigate to the source code that called an OpenCL™ API
 - Specify which OpenCL™ APIs will be traced
GPU PROFILING KEY FEATURES AND BENEFITS

- Collect GPU Performance Counters of AMD Radeon™ graphics cards
 - Show kernel resource usage
 - Show the number of instructions executed by the GPU
 - Show the GPU utilization
 - Show the GPU memory access characteristics
 - Measure kernel execution time

![Performance Counters](image)
GPU PROFILING KEY FEATURES AND BENEFITS

OpenCL™ Timeline visualization

- Visualize the application high level structure
- Visualize kernel execution and data transfer operations
- Visualize host code execution

![OpenCL Timeline visualization](image-url)

The following data table illustrates the timeline and parameters for various OpenCL operations:

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Parameters</th>
<th>Result</th>
<th>Device Block</th>
<th>Kernel Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2824</td>
<td>cEnqueueNDRangeKernel</td>
<td>0x091C7C0b, 0x07C2C70a: 1; NULL; [111]: NULL; NULL</td>
<td>CL_SUCCESS</td>
<td>compute;inter</td>
<td>37.35%</td>
</tr>
<tr>
<td>2835</td>
<td>cFinish</td>
<td>0x091C7C04</td>
<td>CL_SUCCESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2836</td>
<td>cEnqueueNDRangeKernel</td>
<td>0x091C7C04: 1; [0x78F86418]: 0; NULL; NULL</td>
<td>CL_SUCCESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2837</td>
<td>cEnqueueNDRangeKernel</td>
<td>0x091C7C04: [0x09105340]: 0; NULL; NULL</td>
<td>CL_SUCCESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2838</td>
<td>cEnqueueCopyBufferToImage</td>
<td>0x091C7C04: 0x9262578; 0x090105240: 0; 0x0: [64,64,64]: 0; NULL; NULL</td>
<td>CL_SUCCESS</td>
<td></td>
<td>4.0 MB COPY BUFF</td>
</tr>
<tr>
<td>2839</td>
<td>cEnqueueNDRangeKernel</td>
<td>0x091C7C04: [0x09105240]: 0; NULL; NULL</td>
<td>CL_SUCCESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2840</td>
<td>cFlush</td>
<td>0x091C7C04</td>
<td>CL_SUCCESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2841</td>
<td>cFlush</td>
<td>0x091C7C04</td>
<td>CL_SUCCESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2842</td>
<td>cFlush</td>
<td>0x091C7C04</td>
<td>CL_SUCCESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2843</td>
<td>cEnqueueWriteBuffer</td>
<td>0x091C7C04: 0x9262588; CL_F4; 0: 128; 0x02576C0: 0; NULL; NULL</td>
<td>CL_SUCCESS</td>
<td></td>
<td>128.0 Byte WRITE B-</td>
</tr>
<tr>
<td></td>
<td>cEnqueueNDRangeKernel</td>
<td>0x091C7C04: 0x37C22020: 0; NULL; [64,64,64]: [64,64,64]: 0; NULL; NULL</td>
<td>CL_SUCCESS</td>
<td></td>
<td>100.00%</td>
</tr>
</tbody>
</table>
GPU PROFILING KEY FEATURES AND BENEFITS

OpenCL™ Application Summary

- Find incorrect or inefficient usage of the OpenCL™ API using the OpenCL™ analysis module
- Find the API hotspots
- Find the bottlenecks between kernel execution and data transfer operations
- Find the top 10 data transfer and kernel execution operations

![Profile Summary Table]
OpenCL™ Kernel Occupancy Viewer

- Calculates and displays a kernel occupancy number, which estimates the number of in-flight wavefronts on a compute unit as a percentage of the theoretical maximum number of wavefronts that the compute unit can support
- Find out which kernel resource (GPR usage, LDS size, or Work-group size) is currently limiting the number of in-flight wavefronts
- Displays graphs showing how kernel occupancy would be affected by changes in each kernel resource
STATIC KERNEL ANALYSIS – KEY FEATURES AND BENEFITS

- Compile, analyze and disassemble the OpenCL kernel and supports multiple GPU device targets.
- View any kernel compilation errors and warnings generated by the OpenCL runtime.
- View the AMD Intermediate Language (IL) code generated by the OpenCL runtime.
- View the ISA code generated by the AMD Shader Compiler.
- View various statistics generated by analyzing the ISA code.
- View General Purpose Registers and spill registers allocated for the kernel.
LANGUAGE BINDING

Language Binding Tools: allows you to write the OpenCL host code in your own programming language. The OpenCL kernels you use are still written in the OpenCL language.

C
- Calseum (for ATI CAL)
- HMPP Workbench from CAPS entreprise
- Libra SDK from GPU Systems

Fortran
- HMPP Workbench from CAPS entreprise

Java
- JavaCL

Matlab
- IPT_ATI_PROJECT
- Libra SDK from GPU Systems

.NET
- OpenCL .Net
- OpenTK

Python
- CLyther
- PyGWA (for ATI CAL)
- PyOpenCL
- Pythoncl

Kernel Translation Tools: additionally allow you to write the kernel itself in your own programming language. The tools then translate your kernel to the OpenCL language.

Java
- Aparapi

Scala
- ScalaCL
AGENDA

- What’s OpenCL
- Fundamentals for OpenCL programming
- OpenCL programming basics
- OpenCL programming tools
- Demos
DATACENTER WORKLOAD

MEMCACHED
A Distributed Memory Object Caching System Used in Cloud Servers

- Generally used for short-term storage and caching, handling requests that would otherwise require database or file system accesses
- Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others
- Effectively a large distributed hash table
 - Responds to store and get requests received over the network
 - Conceptually:
 - store(key, object)
 - object = get(key)
OFFLOADING MEMCACHED KEY LOOKUP TO THE GPU

Key Look Up Performance

- Multithreaded CPU
- Radeon HD 5870
- "Trinity" A10-5800K
- Zacate E-350

Execution Breakdown

Data Transfer

Execution

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189210
SUMMARY

- OpenCL is an open standard for programming on heterogeneous computing platforms

- OpenCL programming requires
 - Parallel computing thinking
 - GPU architecture knowledge for performance consideration
 - Deep understanding of OpenCL architecture to control devices

- OpenCL key concepts
 - Platform, device, context
 - Command queue, buffer/image, data copying, program, Kernel, Kernel execution

- OpenCL programming tools
 - Code XL

- Next day
 - GPU architecture
 - Kernel optimization
 - OpenCL application optimization
THANKS!
DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. SPEC is a registered trademark of the Standard Performance Evaluation Corporation (SPEC). Other names are for informational purposes only and may be trademarks of their respective owners.