
HANJIN CHU, DIRECTOR, HETEROGENEOUS SOLUTIONS, AMD CHINA

HETEROGENEOUS SYSTEM ARCHITECTURE (HSA) AND THE

SOFTWARE ECOSYSTEM

CUDA BRINGS PERFORMANCE TO PRO/RESEARCH ON

DISCRETE GPU
A

d
o

p
ti
o

n

 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |

CUDA Announced

CUDA gave developers access to unprecedented performance

Not easy to use …but enough performance-hungry developers willing to endure pain

Low Consumer space adoption … esp. due to lack of cross-platform

150K+ downloads

500+ Apps*

1.5M downloads

1200+ Apps

* <5% Consumer

20+% Professional

70+% Research

THE RUNAWAY SUCCESS OF JAVA

Easy to program

Truly cross platform – Write Once Run Anywhere

Lack of performance efficiency offset by platform capability

A
d

o
p

ti
o

n

 1996 | 1999 | 2002 | 2005 | 2008 | 2011 |

JDK1.0

Java 7
10M+ developers

Milllions of Apps

J2SE 5.0
4.5M developers

Java SE 6
6M developers

4 | 2013 TE Staff Planning Meeting| Confidential

CURRENT HETEROGENEOUS SYSTEM: CPU+dGPU

Other Highly Parallel

Workloads

Graphics Workloads

Serial/Task-Parallel

Workloads

NUMA based CPU + GPU can reach high performance but

• Memory Copy always Power Consumption

• System Cost always high and not flexible

OPENCL’S CROSS-PLATFORM APPEAL ON APU/DGPU
A

d
o

p
ti
o

n

 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |

OpenCL 1.0

Announced

Abundant performance + same complexity as CUDA programming

Cross platform resonates with developers (needs per-platform
optimization)

35k+ downloads

11 Llano launch

Apps

300K+ downloads

100+ Apps

OpenCL 1.1

SDK 2.2

6 | 2013 TE Staff Planning Meeting| Confidential

Innovation: HSA – CPU and GPU under UMA

Data Parallel Workloads

Graphics Workloads

Serial and Task Parallel Workloads

7 | 2013 TE Staff Planning Meeting| Confidential

WHAT IS HSA?

SERIAL

WORKLOADS

PARALLEL

WORKLOADS

hUMA (MEMORY)

APU

ACCELERATED PROCESSING UNIT

An intelligent computing architecture that enables CPU, GPU and other processors to work in
harmony on a single piece of silicon by seamlessly moving the right tasks to the best suited processing
element

8 | 2013 TE Staff Planning Meeting| Confidential

AND DESIGNED BEYOND GPU

CPU

GPU

Shared Memory, Coherency, User Mode Queues

Audio

Processor

Video

Hardware

DSP

Image

Signal

Processing

Fixed

Function

Accelerator

Encode

Decode

Engines

Dedicated Processor/Engine becoming co-processor

• Full Programming language support

• User Mode Queueing

• Heterogeneous Unified Memory Access (hUMA)

• Pageable Memory

• Bidirectional coherency

• Compute context switch and preemption

9 | 2013 TE Staff Planning Meeting| Confidential

HSA SW STACK CHANGING PROGRAMMING MODEL

Application SW

Drivers

Differentiated HW

CPU(s) GPU(s)
Other

Accelerators

HSA Finalizer

Legacy

Drivers

Application

Domain Specific Libs

(Bolt, OpenCV™, … many others)

HSA Runtime

DirectX

Runtime

Other

Runtime

HSAIL

GPU ISA

OpenCL™

Runtime

HSA Software

components:
• Compliant heterogeneous computing hardware

• A software compilation stack

• A user - space runtime system

• Kernel - space system components

Overall Vision:
• Make GPU easily accessible

• Support mainstream languages

• Expandable to domain specific languages

• Make compute offload efficient

• Direct path to GPU (avoid Graphics overhead)

• Eliminate memory copy

• Low-latency dispatch

• Make it ubiquitous

• Drive HSA as a standard through HSA

Foundation

• Open Source key components

10 | 2013 TE Staff Planning Meeting| Confidential

HSA OBJECTIVE

Heterogeneous

System

Architecture

New

User

Experiences

Small

Form

Factors

More

Performance

@

Lower Power

HSA creates an improved processor design that exposes the benefits and

capabilities of mainstream programmable compute elements, working together

seamlessly.

HSA FOUNDATION : DRIVING FUTURE OF

HETEROGENEOUS COMPUTING STANDARD

© Copyright 2012 HSA Foundation. All Rights Reserved. 11

Founders

Promoters

Supporters

Contributors

Academic

http://www.apical.co.uk/
http://www.multicorewareinc.com/index.php

AMD HSA ROADMAP

System

Integration

GPU compute

context switch

GPU graphics

pre-emption

Quality of Service

Architectural

Integration

Unified Address Space

for CPU and GPU

Fully coherent memory

between CPU & GPU

GPU uses pageable

system memory via

CPU pointers

Optimized

Platforms

Bi-Directional Power

Mgmt between CPU

and GPU

GPU Compute C++

support

User mode scheduling

Physical

Integration

Integrate CPU & GPU

in silicon

Unified Memory

Controller

Common

Manufacturing

Technology

 WHAT IS hUMA?

heterogeneous

UNIFORM

MEMORY

ACCESS

14

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST

 UNDERSTANDING UMA

Original meaning of UMA is Uniform Memory Access

• Refers to how processing cores in a system view and access memory

• All processing cores in a true UMA system share a single memory address

space

 Introduction of GPU compute created systems with Non-Uniform Memory Access (NUMA)

• Require data to be managed across multiple heaps with different address

spaces

• Add programming complexity due to frequent copies, synchronization, and

address translation

HSA restores the GPU to Uniform memory Access

• Heterogeneous computing replaces GPU Computing

15

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST

 INTRODUCING HUMA

CPU

APU

APU

with

HSA

Memory

CPU CPU CPU CPU

UMA

CPU Memory

CPU CPU CPU CPU

NUMA

GPU
GPU GPU

GPU

GPU Memory

Memory

CPU CPU CPU CPU

hUMA

GPU
GPU

GPU
GPU

16

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST

 HUMA KEY FEATURES

BI-DIRECTIONAL COHERENT MEMORY
Any updates made by one processing element will be seen by all other processing elements -

GPU or CPU

PAGEABLE MEMORY
GPU can take page faults, and is no longer restricted to page locked memory

ENTIRE MEMORY SPACE
CPU and GPU processes can dynamically allocate memory from the entire memory space

17

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST

 HUMA KEY FEATURES

Physical Memory

GPU

HW

Coherency

Virtual Memory

CPU

Entire memory space:

Both CPU and GPU can access and allocate

any location in the system’s virtual memory

space

Cache Cache

Coherent Memory:

Ensures CPU and GPU

caches both see

an up-to-date view of data

Pageable memory:

 The GPU can seamlessly

access virtual memory

 addresses that are not (yet)

present in physical memory

18

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST

 WITHOUT POINTERS* AND DATA SHARING

*A Pointer is a named variable that holds a memory address. It makes it easy to reference data or code

segments by a name and eliminates the need for the developer to know the actual address in

memory. Pointers can be manipulated by the same expressions used to operate on any other variable

GPU

CPU

CPU Memory GPU Memory

| | | | | | | | | |

| | | | | | | | | |

 Without hUMA:
• CPU explicitly copies data to GPU memory

• GPU completes computation

• CPU explicitly copies result back to CPU memory

Only the data array

can be copied since GPU

cannot follow embedded

 data-structure links

19

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST

GPU

 With hUMA:
• CPU simply passes a pointer to GPU

• GPU completes computation

• CPU can read the result directly – no copying needed!

CPU

CPU / GPU Uniform Memory

| | | | | | | | | |

*A Pointer is a named variable that holds a memory address. It makes it easy to reference data or code segments by a name and

eliminates the need for the developer to know the actual address in memory. Pointers can be manipulated by the same expressions used

to operate on any other variable

CPU can pass a pointer to

entire data structure since

the GPU can now follow

embedded links

 WITH POINTERS* AND DATA SHARING

20

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST

 TOP 10 DRIVING HARDWARE COHERENT ON GPU/APU

1. Much easier for programmers

2. No need for special APIs

3. Move CPU multi-core algorithms to the GPU without recoding for absence of coherency

4. Allow finer grained data sharing than software coherency

5. Implement coherency once in hardware, rather than N times in different software stacks

6. Prevent hard to debug errors in application software

7. Operating systems prefer hardware coherency – they do not want the bug reports to the platform

8. Probe filters and directories will maintain power efficiency

9. Full coherency opens the doors to single source, native and managed code programming for heterogeneous platforms

10. Optimal architecture for heterogeneous computing on APUs and SOCs

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST



 HUMA FEATURES

Access to Entire Memory Space

Pageable memory

Bi-directional Coherency

Fast GPU access to system memory

Dynamic Memory Allocation









22

AMD Confidential, under embargo until Apr 30, 12:01 AM

EST

 HSA PROGRAMMING

MODEL

WHAT IS HSA

Heterogeneous System Architecture

 Efficiently support a wide assortment of data-parallel and task-

parallel programming models

 Provides a unified view of fundamental computing elements

 Allows a programmer to write applications that seamlessly

integrate

 CPUs (called latency compute units)

 GPUs (called throughput compute units)

HSA TAKING PLATFORM TO PROGRAMMERS

 Balance between CPU and GPU for performance and power efficiency

 Make GPUs accessible to wider audience of programmers

 Programming models close to today’s CPU programming models

 Enabling more advanced language features on GPU

 Shared virtual memory enables complex pointer-containing data structures (lists, trees,

etc.) and hence more applications on GPU

 Kernel can enqueue work to any other device in the system (e.g. GPU->GPU, GPU-

>CPU)

• Enabling task-graph style algorithms, Ray-Tracing, etc

 Clearly defined HSA memory model enables effective reasoning for parallel programming

 HSA provides a compatible architecture across a wide range of programming models and

HW implementations.

IMPROVE PERFORMANCE AND REDUCE POWER

• Pass pointers rather than copying memory

• Eliminate power and time associated with data copies

• Reduce kernel launch time

• User-mode queuing

• Avoid OS kernel transitions when commands are sent to the GPU

• “Architected Queuing Language”

• Stable, architected, heterogeneous compute engine command language

• Optimizing GPU compute compiler

• Optimizations done in single compiler (rather than 2-3 today)

• High-Level compiler performs optimizations and generates HSAIL

• Finalize converts HSAIL to target ISA – focused on correctness and compilation speed

26 | 2013 TE Staff Planning Meeting| Confidential

RECAP HSA SW STACK

Application SW

Drivers

Differentiated HW

CPU(s) GPU(s)
Other

Accelerators

HSA Finalizer

Legacy

Drivers

Application

Domain Specific Libs

(Bolt, OpenCV™, … many others)

HSA Runtime

DirectX

Runtime

Other

Runtime

HSAIL

GPU ISA

OpenCL™

Runtime

HSA Software

components:
• Compliant heterogeneous computing hardware

• A software compilation stack

• A user - space runtime system

• Kernel - space system components

Overall Vision:
• Make GPU easily accessible

• Support mainstream languages

• Expandable to domain specific languages

• Make compute offload efficient

• Direct path to GPU (avoid Graphics overhead)

• Eliminate memory copy

• Low-latency dispatch

• Make it ubiquitous

• Drive HSA as a standard through HSA

Foundation

• Open Source key components

© Copyright 2012 HSA Foundation. All Rights Reserved. 27

CPU

GPU

Audio

Processor

Video

Hardware

DSP

Image

Signal

Processing

Fixed

Function

Acctr

Encode

Decode

S
h
a
re

d
 M

e
m

o
ry

C
o
h
e
re

n
c
y,

 U
s
e
r

M
o
d
e
 Q

u
e
u
e
s

GPU compute C++ support

User Mode Scheduling

Fully coherent memory

between CPU & GPU

GPU uses pageable system

memory via CPU pointers

GPU graphics pre-emption

GPU compute context switch

 HSA

ARCHITECTURE

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

HSA INTERMEDIATE LANGUAGE - HSAIL

 Designed for C99, C++ 2011, Java, Renderscript,

OpenCL, C++ AMP

 HSAIL is a virtual ISA for parallel programs

 Finalized to ISA by a JIT compiler or “Finalizer”

 ISA independent by design for CPU & GPU

 Explicitly parallel

 Designed for data parallel programming

 Support for exceptions, virtual functions,

and other high level language features

 Syscall methods

 GPU code can call directly to system services,

IO, printf, etc

© Copyright 2012 HSA Foundation. All Rights Reserved. 28

OPENCL™ AND HSA

 HSA is an optimized platform architecture for

OpenCL™

 Not an alternative to OpenCL™

 OpenCL™ on HSA will benefit from

 Avoidance of wasteful copies

 Low latency dispatch

 Improved memory model

 Pointers shared between CPU and GPU

 HSA also exposes a lower level programming

interface, for those that want the ultimate in

control and performance

 Optimized libraries may choose the lower

level interface

HETEROGENEOUS COMPUTE DISPATCH

How compute dispatch operates

today in the driver model

How compute dispatch

improves under HSA

TODAY’S COMMAND AND DISPATCH FLOW
Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Hardware

Queue

A GPU

HARDWARE

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Hardware

Queue

A

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

GPU

HARDWARE

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A

C

B
A B

GPU

HARDWARE

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B
A B

HSA COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

 No APIs

 No Soft Queues

 No User Mode Drivers

 No Kernel Mode Transitions

 No Overhead!

 Application codes to the

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times

B to CPU1 (do not delete – part of animation)

CPU1 to B (do not delete – part of animation)

C to CPU2 (do not delete – part of animation)

A to CPU1 (do not delete – part of animation)

App to C (do not delete – part of animation)

App to A (do not delete – part of animation)

Application / Runtime

HSA COMMAND AND DISPATCH CPU <-> GPU

B A F E D C G

CPU2 CPU1 GPU

Click 3 and 4

© Copyright 2012 HSA Foundation. All Rights Reserved. 37

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™ 1.x, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

LLVM-RS-CC LLVM

QUICK LOOK AT HSA COMPILER INFRASTRUCTURE

 -

38

Clang –C++ AMP, OpenCL,

KL, etc.

Finalizer/JIT Library

Clang - Renderscript

LibBCC Library

Optimized BitCode

BRIG Binary Object

(Machine Independent

Optimized HSAIL)

Processor

Link Link

Processor

LibRS Loader Loader

Optimized Output Optimized Output

Optimized for Fast Compiler Time Optimized for Fast Compiler Time

SECURING GPU RESOURCES IN THE SYSTEM

 GPU now supports a full MMU which allow for

User protected execution, protected memory and

memory curtaining

 Read, write and execute protections by page table

entry

 Brings inter-process protection

 Improved fault handling

 The ability to kill errant task on the GPU.

39

INTEROP OF HSA AND GRAPHICS

 OpenGL-ES/EGL can share data with HSA Runtime

 Buffer (Vertex/Pixelbuffer)

 Texture

 Renderbuffer

 Mapping

 HSA Image -> OpenGL-ES Texture, renderbuffer

 HSA buffer -> OpenGL-ES buffer

 Sync

 Acquire and Release mechanism

40

SECURITY IMPROVEMENTS WITH HSA

 With HSA, GPU operates in the same security infrastructure as the CPU

 User and privileged memory

 Read, write and execute protections by page table entry

 Internally, the GPU partitions functionality by privilege level

 User mode compute queues can only run AQL packets

 User mode graphics command buffers cannot write privileged registers

 HSA supports fixed time context switching, which is resistant to denial of service (DoS)

attacks

 Today’s GPUs are vulnerable to denial of service attacks

 Long or infinite shader programs

 Full GPU reset required to restore service

 With HSA, fair scheduling and context switching ensures a responsive system

RICHER PROGRAMING MODEL SUPPORT

 Support for Today GPU Programing Model

 Data Parallelism - Embarrassingly Parallel Application

 SPMD – Single Program Multiple Data Based Application

 In addition supporting richer set of Parallel Solutions

 Task-Parallelism, Nested-Parallelism, Braided-Parallelism,

 Task-graph style algorithms

 Support for Algorithm that need Inter-task Communication.

 Application that need exceptions processing

RICHER SUPPORT OF ADVANCED ALGORITHMS

Computational Photography

• Feature Extraction

• Feature Matching

• Geometric Verification

• Image Stitching

• HDR

• DoF control

• Lightfield Imaging

Visual Search
• Feature Extraction

• Feature Matching

• Geometric Verification

Gesture Recognition
• Image Segmentation

• Motion Estimation

• Computation of Geometry (shape analysis)

Hidden Markov Model acceleration

Operate on large Markov Random Fields

APPLICATION AREAS WITH ABUNDANT PARALLEL
WORKLOADS

ACCELERATED WORKLOADS

CLIENT AND SERVER EXAMPLES

LOOKING FOR FACES IN ALL THE RIGHT PLACES

Quick HD Calculations

Search square = 21 x 21

Pixels = 1920 x 1080 = 2,073,600

Search squares = 1900 x 1060 = ~2 Million

LOOKING FOR DIFFERENT SIZE FACES – BY SCALING

THE VIDEO FRAME

© Copyright 2012 HSA Foundation. All Rights Reserved. 47

More HD Calculations

70% scaling in H and V

Total Pixels = 4.07 Million

Search squares = 3.8 Million

Feature l

Feature m

Feature p

Feature r

Feature q

HAAR CASCADE STAGES

Feature k

Stage N

Stage N+1

Face still
possible? Yes

No

REJECT
FRAME

© Copyright 2012 HSA Foundation. All Rights Reserved. 48

22 CASCADE STAGES, EARLY OUT BETWEEN EACH

STAGE 22 STAGE 21 STAGE 2 STAGE 1

NO FACE

FACE
CONFIRMED

Final HD Calculations

Search squares = 3.8 million

Average features per square = 124

Calculations per feature = 100

Calculations per frame = 47 GCalcs

Calculation Rate

30 frames/sec = 1.4TCalcs/second

60 frames/sec = 2.8TCalcs/second

…and this only gets front-facing faces

© Copyright 2012 HSA Foundation. All Rights Reserved. 49

CASCADE DEPTH ANALYSIS

0

5

10

15

20

25

Cascade Depth

20-25

15-20

10-15

5-10

0-5

© Copyright 2012 HSA Foundation. All Rights Reserved. 50

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9-22

T
im

e
 (

m
s
)

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

GPU

CPU

PROCESSING TIME/STAGE

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

Cascade Stage

© Copyright 2012 HSA Foundation. All Rights Reserved. 51

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 22

Im
a
g

e
s
/S

e
c

Number of Cascade Stages on GPU

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

CPU

HSA

GPU

PERFORMANCE CPU-VS-GPU

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

© Copyright 2012 HSA Foundation. All Rights Reserved. 52

HAAR SOLUTION – RUN DIFFERENT CASCADES ON

GPU AND CPU

By seamlessly sharing data between CPU and GPU,

HSA allows the right processor to handle its appropriate

workload

+2.5x

-2.5x

INCREASED

PERFORMANCE
DECREASED ENERGY

PER FRAME

© Copyright 2012 HSA Foundation. All Rights Reserved. 53

ACCELERATING MEMCACHED
CLOUD SERVER WORKLOAD

MEMCACHED

 A Distributed Memory Object Caching System Used in Cloud Servers

 Generally used for short-term storage and caching, handling requests that would

otherwise require database or file system accesses

 Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others

 Effectively a large distributed hash table

 Responds to store and get requests received over the network

 Conceptually:

 store(key, object)

 object = get(key)

© Copyright 2012 HSA Foundation. All Rights Reserved. 55

0

1

2

3

4
Key Look Up Performance Execution Breakdown

Data Transfer Execution

100%

80%

60%

40%

20%

0

OFFLOADING MEMCACHED KEY LOOKUP TO THE GPU

T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt, “Characterizing and Evaluating a Key-Value Store Application on Heterogeneous CPU-GPU Systems,”

Proceedings of the 2012 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2012), April 2012.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

Multithreaded CPU Radeon HD 5870 “Trinity” A10-5800K Zacate E-350

© Copyright 2012 HSA Foundation. All Rights Reserved. 56

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

ACCELERATING B+TREE

SEARCHES
CLOUD SERVER WORKLOAD

B+TREE SEARCHES

 B+Trees are a fundamental data structure

 Used to reduce memory & disk access to locate a key

 Can support index- and range-based queries

 Can be updated efficiently

 B+Trees are used by enterprise DB applications

 SQL: SQLite, MySQL, Oracle, and others

 No-SQL: Apache CouchDB, Tokyo Cabinet, and others

 Audio search, video copy detection

© Copyright 2012 HSA Foundation. All Rights Reserved. 58

A simple B+Tree linking the keys 1-7. The

linked list (red) allows rapid in-order traversal.

PARALLEL B+TREE SEARCHES ON HSA

© Copyright 2012 HSA Foundation. All Rights Reserved. 59

By efficiently sharing data between CPU and

GPU, HSA increases performance versus Multi

Threaded CPU, even for tree structures that

reside in host memory.

M. Daga, and M. Nutter, “Exploiting Coarse-Grained Parallelism in B+Tree Searches on an APU”, Accepted at ”Second Workshop on Irregular Applications: Algorithms and Architectures, (IA3)” November 2012.

Platform Size <

1.5 GB

Size

1.5-2.7 GB

Size >

2.7 GB

dGPU
(memory size = 3GB)

✓ ✓ ✗

HSA ✓ ✓ ✓ INCREASED PERFORMANCE

+4x

With HSA, DB can be larger than GPU

memory, and can be shared.

 HSA lets us move compute to data

 Parallel search can move to GPU

 Sequential updates can remain on CPU

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G, 6 compute units, 685MHz; 4GB RAM

ACCELERATING JAVA
GOING BEYOND NATIVE LANGUAGES

JAVA ENABLEMENT BY APARAPI

Developer creates
Java™ source

Source compiled to class files
(bytecode) using standard compiler

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™

For execution on any

OpenCL™ 1.1+ capable device

OR execute via a thread pool if
OpenCL™ is not available

© Copyright 2012 HSA Foundation. All Rights Reserved. 61

JAVA AND APARAPI HSA ENABLEMENT ROADMAP

© Copyright 2012 HSA Foundation. All Rights Reserved. 62

HSAIL

HSA-Enabled JVM

Application

HSA GPU HSA CPU

HSA Finalizer

CPU ISA GPU ISA

HSA Runtime

LLVM Optimizer

HSAIL

IR

JVM

Application

APARAPI

HSA GPU HSA CPU

HSA Finalizer

CPU ISA GPU ISA CPU ISA GPU ISA

JVM

Application

APARAPI

GPU CPU

OpenCL™

HSAIL

JVM

Application

APARAPI

HSA GPU HSA CPU

HSA Finalizer

CPU ISA GPU ISA

EASE OF PROGRAMMING
CODE COMPLEXITY VS. PERFORMANCE

Optimized template library routines for common GPU functions

 For OpenCL™ and C++ AMP, across multiple platforms

Programming model interface similar to multicore Task Parallel Runtimes (TBB, ConCRT)

CPU performance as good or better than multicore Task Parallel Runtimes

Excellent performance and power efficiency on HSA Devices

For many applications, single source code base for both CPU and GPU !

Leverage robust Visual Studio C++AMP debug solution

Will appeal to developers not yet on GPU, or porting from CUDA/Thrust

BOLT

0

50

100

150

200

250

300

350

L
O

C

LINES-OF-CODE AND PERFORMANCE FOR DIFFERENT

PROGRAMMING MODELS

Copy-back Algorithm Launch Copy Compile Init Performance

Serial CPU TBB Intrinsics+TBB OpenCL™-C OpenCL™ -C++ C++ AMP HSA Bolt

P
e

rfo
rm

a
n

c
e

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0 Copy-back

Algorithm

Launch

Copy

Compile

Init.

Copy-back

Algorithm

Launch

Copy

Compile

Copy-back

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

(Exemplary ISV “Hessian” Kernel)

AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.

Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

© Copyright 2012 HSA Foundation. All Rights Reserved. 65

RESEARCH TOPICS IN HSA
Category Description Comments

Languages/Compilers Higher-level languages. GPU languages are primitive today. OpenCL is a good expert tool.

Look into domain specific languages (graphics, math). Ex: HSA could have a database

accelerator component

Split compilation model – high level compliers & low level compilers and how to make them

work well together

How to run best on a device with multi ISA’s

Software Run-Time Classic load balancing. Look for new ways to partition algorithms automatically in the runtime.

Simultaneous running of multiple kernels or multiple applications. Quality of service &

virtualization. Scheduling for complex status graphs and scheduling dynamic parallelism

System Architecture • Bandwidth/memory arch (balancing BW with compute)

• Load balancing

• Memory configurations: Stack memory devices will eventually appear and systems will

change around idea of bandwidth. Shared memory stacks – what are the implications?

• TCU/LCU ratios

Hardware Logical split between split function hardware.

• Applying HSA to non-GPU devices (DSPs, FPGAs, etc.)

• Heterogeneous conformance optimization - how to run a program that runs well on all

different HSA platforms and hardware

Memory system design: low cost support for coherency and would give programmers a way to

optimize their use of coherence

Security: looking into securing systems

Efficient synchronization primitives

3D graphics pipes – integration with HSA

SOLUTION

PROBLEM

THE HSA OPPORTUNITY FOR DEVELOPER

Developer

Return
(Differentiation in

performance,

reduced power,

features,

time to market)

Developer Investment
(Effort, time, new skills)

Good user
experiences

 Historically, developers program CPUs

 HSA + Libraries =
productivity & performance with low power

Wide range of
differentiated
experiences

~4M
apps

20+M*
CPU

coders

PROBLEM

Significant
niche
value

 Het. systems hard to program

 Not all workloads accelerate

~200
apps

~100K
GPU

coders

Few
100Ks
HSA
apps

Few M
HSA

coders

*IDC

