
HANJIN CHU, DIRECTOR, HETEROGENEOUS SOLUTIONS, AMD CHINA 

HETEROGENEOUS SYSTEM ARCHITECTURE (HSA) AND THE  

SOFTWARE ECOSYSTEM 



CUDA BRINGS PERFORMANCE TO PRO/RESEARCH ON 

DISCRETE GPU 
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  2006 |        2007        |        2008        |        2009        |        2010        |        2011        |        2012        | 

CUDA Announced 

CUDA gave developers access to unprecedented performance 

Not easy to use …but enough performance-hungry developers willing to endure pain 

Low Consumer space adoption … esp. due to lack of cross-platform 

150K+ downloads 

500+ Apps* 

1.5M downloads 

1200+ Apps 

*     <5% Consumer  

20+% Professional 

70+% Research 



THE RUNAWAY SUCCESS OF JAVA 

Easy to program 

Truly cross platform – Write Once Run Anywhere 

Lack of performance efficiency offset by platform capability 

A
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         1996        |        1999        |        2002        |        2005       |        2008        |        2011        | 

JDK1.0 

Java 7 
10M+ developers 

Milllions of Apps 

J2SE 5.0 
4.5M developers 

Java SE 6 
6M developers 
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CURRENT HETEROGENEOUS SYSTEM: CPU+dGPU 

Other Highly Parallel 

Workloads 

Graphics Workloads 

Serial/Task-Parallel 

Workloads 

NUMA based CPU + GPU can reach high performance but 

• Memory Copy always Power Consumption 

• System Cost always high and not flexible 



OPENCL’S CROSS-PLATFORM APPEAL ON APU/DGPU 
A

d
o

p
ti
o

n
 

  2006 |        2007        |        2008        |        2009        |        2010        |        2011        |        2012        | 

OpenCL 1.0  

Announced 

Abundant performance + same complexity as CUDA programming 

Cross platform resonates with developers (needs per-platform 
optimization)  

35k+ downloads 

11 Llano launch 

Apps 

300K+ downloads 

100+ Apps 

OpenCL 1.1  

SDK 2.2  
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Innovation: HSA – CPU and GPU under UMA 
 

Data Parallel Workloads 

Graphics Workloads 

Serial and Task Parallel Workloads 
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WHAT IS HSA? 

 

SERIAL 

WORKLOADS 

PARALLEL 

WORKLOADS 

hUMA (MEMORY) 

APU 

ACCELERATED PROCESSING UNIT 

An intelligent computing architecture that enables CPU, GPU and other processors to work in 
harmony on a single piece of silicon by seamlessly moving the right tasks to the best suited processing 
element 
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AND DESIGNED BEYOND GPU 

CPU  

GPU  

Shared Memory, Coherency, User Mode Queues 

Audio 

Processor  

Video 

Hardware 

DSP 

 

Image 

Signal 

Processing  

Fixed 

Function 

Accelerator 

Encode 

Decode 

Engines 

Dedicated Processor/Engine becoming co-processor 

• Full Programming language support 

• User Mode Queueing 

• Heterogeneous Unified Memory Access (hUMA) 

• Pageable Memory 

• Bidirectional coherency 

• Compute context switch and preemption 
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HSA SW STACK CHANGING PROGRAMMING MODEL 

Application SW 

Drivers 

Differentiated HW 

CPU(s) GPU(s) 
Other 

Accelerators 

HSA Finalizer 

Legacy  

Drivers 

Application 

 

 

 

 

 

Domain Specific Libs 

(Bolt, OpenCV™, … many others) 

 

 

HSA Runtime 

DirectX 

Runtime 

Other 

Runtime 

HSAIL 

GPU ISA 

OpenCL™ 

Runtime 

HSA Software 

components: 
• Compliant heterogeneous  computing hardware 

• A software compilation stack 

• A user - space runtime system 

• Kernel - space system components 

Overall Vision: 
• Make GPU easily accessible 

• Support mainstream languages 

• Expandable to domain specific languages 

• Make compute offload efficient 

• Direct path to GPU (avoid Graphics overhead) 

• Eliminate memory copy 

• Low-latency dispatch 

• Make it ubiquitous 

• Drive HSA as a standard through HSA 

Foundation 

• Open Source key components 
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HSA OBJECTIVE 

 

 

Heterogeneous 

System 

Architecture 

New  

User  

Experiences 

Small 

Form  

Factors 

More  

Performance 

 

@ 

 

Lower Power 

HSA creates an improved processor design that exposes the benefits and 

capabilities of mainstream programmable compute elements, working together 

seamlessly. 



HSA FOUNDATION : DRIVING FUTURE OF 

HETEROGENEOUS COMPUTING STANDARD 

© Copyright 2012 HSA Foundation.  All Rights Reserved. 11 

Founders 

Promoters 

Supporters            

Contributors 

    

Academic 

    

http://www.apical.co.uk/
http://www.multicorewareinc.com/index.php


AMD HSA  ROADMAP 

System 

Integration 

GPU compute  

context switch 

GPU graphics  

pre-emption 

Quality of Service 

Architectural 

Integration 

Unified Address Space 

for CPU and GPU 

Fully coherent memory 

between CPU & GPU 

GPU uses pageable 

system memory via 

CPU pointers 

Optimized 

Platforms 

Bi-Directional Power 

Mgmt between CPU 

and GPU 

GPU Compute C++ 

support 

User mode scheduling 

Physical 

Integration 

Integrate CPU & GPU  

in silicon 

Unified Memory 

Controller 

Common 

Manufacturing 

Technology 



     WHAT IS hUMA? 

 

heterogeneous 

UNIFORM 

MEMORY 

ACCESS 
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  UNDERSTANDING UMA 

Original meaning of UMA is Uniform Memory Access 

• Refers to how processing cores in a system view and access memory 

• All processing cores in a true UMA system share a single memory address 

space  

 

 Introduction of GPU compute created systems with Non-Uniform Memory Access (NUMA) 

• Require data to be managed across multiple heaps with different address 

spaces 

• Add programming complexity due to frequent copies, synchronization, and 

address translation 

HSA restores the GPU to Uniform memory Access 

• Heterogeneous computing replaces GPU Computing 
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  INTRODUCING HUMA 

CPU 

APU 

APU  

with  

HSA 

Memory 

CPU CPU CPU CPU 

UMA 

CPU Memory 

CPU CPU CPU CPU 

NUMA 

GPU 
GPU GPU 

GPU 

GPU Memory 

Memory 

CPU CPU CPU CPU 

hUMA 

GPU 
GPU 

GPU 
GPU 
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  HUMA KEY FEATURES 

BI-DIRECTIONAL COHERENT  MEMORY 
Any updates made by one processing element will be seen by all other processing elements - 

GPU or CPU 

PAGEABLE MEMORY 
GPU can take page faults, and is no longer restricted to page locked memory 

ENTIRE MEMORY SPACE 
CPU and GPU processes can dynamically allocate memory from the entire memory space 
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  HUMA KEY FEATURES 

Physical Memory 

GPU 
 

HW 

Coherency 

Virtual Memory 

 

 
 

CPU 

 
 

Entire memory space:   

Both CPU and GPU can access and allocate 

any location in the system’s virtual memory 

space 

Cache Cache 

Coherent Memory:  
 
Ensures CPU and GPU  

caches both see  

an up-to-date view of data 

Pageable memory: 
 

 The GPU can seamlessly  

access virtual memory 

 addresses that are not (yet)  

present in physical memory  
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  WITHOUT POINTERS* AND DATA SHARING 

*A Pointer is a named variable that holds a memory address.  It makes it easy to reference data or code 

segments by a name and eliminates the need for the developer to know the actual address in 

memory.  Pointers can be manipulated by the same expressions used to operate on any other variable 

GPU 
 

 

 
 

 

CPU 

 
 

CPU Memory GPU Memory 

| | | | |  | | | | |  

| | | | |  | | | | |  

                      Without  hUMA: 
• CPU explicitly copies data to GPU memory 

• GPU completes computation 

• CPU explicitly copies result back to CPU memory 

Only the data array  

can be copied since GPU 

cannot follow embedded 

 data-structure links 
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GPU 
 

                              With hUMA: 
• CPU simply passes a pointer to GPU 

• GPU completes computation 

• CPU can read the result directly – no copying needed! 

CPU 

 
 

 

 
 

CPU / GPU Uniform Memory 

| | | | |  | | | | |  

*A Pointer is a named variable that holds a memory address.  It makes it easy to reference data or code segments by a name and 

eliminates the need for the developer to know the actual address in memory.  Pointers can be manipulated by the same expressions used 

to operate on any other variable 

CPU can pass a pointer to 

entire data structure since 

the GPU can now  follow 

embedded links 

 WITH POINTERS* AND DATA SHARING 
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  TOP 10 DRIVING HARDWARE COHERENT ON GPU/APU 

1. Much easier for programmers  

2. No need for special APIs  

3. Move CPU multi-core algorithms to the GPU without recoding for absence of coherency 

4. Allow finer grained data sharing than software coherency 

5. Implement coherency once in hardware, rather than N times in different software stacks 

6. Prevent hard to debug errors in application software 

7. Operating systems prefer hardware coherency – they do not want the bug reports to the platform 

8. Probe filters and directories will  maintain power efficiency 

9. Full coherency opens the doors to single source, native and managed code programming for heterogeneous platforms  

10. Optimal architecture for heterogeneous computing on APUs and SOCs 

AMD  Confidential, under embargo until Apr 30, 12:01 AM 

EST   

 

 



 

  HUMA FEATURES 

Access to Entire Memory Space 

Pageable memory 

Bi-directional Coherency 

Fast GPU access to system memory  

Dynamic Memory Allocation 

 

 

 

 
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     HSA PROGRAMMING 

MODEL 



WHAT IS HSA 

Heterogeneous System Architecture 

 Efficiently support a wide assortment of data-parallel and task-

parallel programming models 

 Provides a unified view of fundamental computing elements 

 Allows a programmer to write applications that seamlessly 

integrate  

 CPUs (called latency compute units)  

 GPUs (called throughput compute units) 

 



HSA TAKING PLATFORM TO PROGRAMMERS 

 Balance between CPU and GPU for performance and power efficiency 

 Make GPUs accessible to wider audience of programmers 

 Programming models close to today’s CPU programming models 

 Enabling more advanced language features on GPU 

 Shared virtual memory enables complex pointer-containing data structures (lists, trees, 

etc.) and hence more applications on GPU 

 Kernel can enqueue work to any other device in the system (e.g. GPU->GPU, GPU-

>CPU) 

• Enabling task-graph style algorithms, Ray-Tracing, etc 

 Clearly defined HSA memory model enables effective reasoning for parallel programming 

 HSA provides a compatible architecture across a wide range of programming models and 

HW implementations. 

 



IMPROVE PERFORMANCE AND REDUCE POWER 

• Pass pointers rather than copying memory 

• Eliminate power and time associated with data copies 

• Reduce kernel launch time 

• User-mode queuing 

• Avoid OS kernel transitions when commands are sent to the GPU 

• “Architected Queuing Language” 

• Stable, architected, heterogeneous compute engine command language 

• Optimizing GPU compute compiler 

• Optimizations done in single compiler (rather than 2-3 today) 

• High-Level compiler  performs optimizations and generates HSAIL 

• Finalize converts HSAIL to target ISA – focused on correctness and compilation speed 
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RECAP HSA SW STACK 

Application SW 

Drivers 

Differentiated HW 

CPU(s) GPU(s) 
Other 

Accelerators 

HSA Finalizer 

Legacy  

Drivers 

Application 

 

 

 

 

 

Domain Specific Libs 

(Bolt, OpenCV™, … many others) 

 

 

HSA Runtime 

DirectX 

Runtime 

Other 

Runtime 

HSAIL 

GPU ISA 

OpenCL™ 

Runtime 

HSA Software 

components: 
• Compliant heterogeneous  computing hardware 

• A software compilation stack 

• A user - space runtime system 

• Kernel - space system components 

Overall Vision: 
• Make GPU easily accessible 

• Support mainstream languages 

• Expandable to domain specific languages 

• Make compute offload efficient 

• Direct path to GPU (avoid Graphics overhead) 

• Eliminate memory copy 

• Low-latency dispatch 

• Make it ubiquitous 

• Drive HSA as a standard through HSA 

Foundation 

• Open Source key components 
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CPU  

GPU  

Audio 

Processor  

Video 

Hardware 

DSP 

Image 

Signal 

Processing  

Fixed 
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GPU compute C++ support 

User Mode Scheduling 

Fully coherent memory 

between CPU & GPU 

GPU uses pageable system 

memory via CPU pointers 

GPU graphics  pre-emption 

GPU compute context switch 

 HSA 

ARCHITECTURE 

HSA Software Stack 

Task Queuing 

Libraries 

HSA Domain Libraries, 

OpenCL ™ 2.x Runtime  

HSA Kernel  

Mode Driver 

HSA Runtime 

HSA JIT 

Apps 
Apps 

Apps 
Apps 

Apps 
Apps 



HSA INTERMEDIATE LANGUAGE - HSAIL 

 Designed for C99, C++ 2011, Java, Renderscript, 

OpenCL, C++ AMP 

 HSAIL is a virtual ISA for parallel programs 

 Finalized to ISA by a JIT compiler or “Finalizer” 

 ISA independent by design for CPU & GPU 

 Explicitly parallel 

 Designed for data parallel programming 

 Support  for exceptions, virtual functions,   

and other high level language features 

 Syscall methods  

 GPU code can call directly  to system services, 

IO, printf, etc 
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OPENCL™ AND HSA 

 HSA is an optimized platform architecture for 

OpenCL™ 

 Not an alternative to OpenCL™ 

 OpenCL™ on HSA will benefit from 

 Avoidance of wasteful copies 

 Low latency dispatch 

 Improved memory model 

 Pointers shared between CPU and GPU 

 HSA also exposes a lower level programming 

interface, for those that want the ultimate in 

control and performance 

 Optimized libraries may choose the lower 

level interface 

 

 

 



HETEROGENEOUS COMPUTE DISPATCH 

How compute dispatch operates 

today in the driver model 

 

 

 
How compute dispatch 

improves under HSA 

 

 

 



TODAY’S COMMAND AND DISPATCH FLOW 
Command Flow Data Flow 

Soft 

Queue  

Kernel 

Mode 

Driver 

Application 

A 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

Hardware 

Queue 

A GPU 

HARDWARE 



Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

A 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

TODAY’S COMMAND AND DISPATCH FLOW 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

C 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

Hardware 

Queue 

A 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

B 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

GPU 

HARDWARE 



TODAY’S COMMAND AND DISPATCH FLOW 

Hardware 

Queue 

A 

C 

B 
A B 

GPU 

HARDWARE 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

A 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

C 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

B 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 



Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

A 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

C 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

B 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

TODAY’S COMMAND AND DISPATCH FLOW 

Hardware 

Queue 

A GPU 

HARDWARE 

C 

B 
A B 



HSA COMMAND AND DISPATCH FLOW 

Application 

A 

Application 

B 

Application 

C 

Optional Dispatch 

Buffer 

GPU 

HARDWARE 

Hardware Queue 

A 

A A 

Hardware Queue 

B 

B B 

Hardware Queue 

C 

C C 

C 

C 

 No APIs 

 No Soft Queues 

 No User Mode Drivers 

 No Kernel Mode Transitions 

 No Overhead! 

 Application codes to the 

hardware 

 User mode queuing 

 Hardware scheduling 

 Low dispatch times 



B to CPU1   (do not delete – part of animation) 

CPU1 to B    (do not delete – part of animation) 

C to CPU2    (do not delete – part of animation) 

A to CPU1    (do not delete – part of animation) 

App to C    (do not delete – part of animation) 

App to A    (do not delete – part of animation) 

Application / Runtime 

HSA COMMAND AND DISPATCH CPU <-> GPU 

B A F E D C G 

CPU2 CPU1 GPU 

Click 3 and 4 
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Hardware - APUs, CPUs, GPUs 

Driver Stack 

Domain Libraries 

OpenCL™ 1.x, DX Runtimes,  

User Mode Drivers 

Graphics Kernel Mode Driver 

Apps 
Apps 

Apps 
Apps 

Apps 
Apps 

HSA Software Stack 

Task Queuing 

Libraries 

HSA Domain Libraries, 

OpenCL ™ 2.x Runtime  

HSA Kernel  

Mode Driver 

HSA Runtime 

HSA JIT 

Apps 
Apps 

Apps 
Apps 

Apps 
Apps 

User mode component Kernel mode component Components contributed by third parties 



LLVM-RS-CC LLVM 

QUICK LOOK AT HSA COMPILER INFRASTRUCTURE 

 - 

38 

Clang –C++ AMP, OpenCL, 

KL, etc. 

Finalizer/JIT Library 

Clang - Renderscript 

LibBCC Library 

Optimized  BitCode 

BRIG Binary Object  

( Machine Independent 

Optimized HSAIL)  

Processor 

Link Link 

Processor 

LibRS Loader Loader 

Optimized Output  Optimized Output  

Optimized for Fast Compiler Time  Optimized for Fast Compiler Time  



SECURING GPU RESOURCES IN THE SYSTEM 

 GPU now supports a full MMU which allow for 

User protected execution, protected memory and 

memory curtaining  

 Read, write and execute protections by page table 

entry 

 Brings inter-process protection  

 Improved fault handling  

 The ability to kill errant task on the GPU.  

39 



INTEROP OF HSA AND GRAPHICS 

 OpenGL-ES/EGL can share data with HSA Runtime 

 Buffer (Vertex/Pixelbuffer)  

 Texture  

 Renderbuffer 

 Mapping  

 HSA Image -> OpenGL-ES Texture, renderbuffer 

 HSA buffer -> OpenGL-ES  buffer  

 Sync  

 Acquire and Release mechanism 

40 



SECURITY IMPROVEMENTS WITH HSA  

 With HSA, GPU operates in the same security infrastructure as the CPU 

 User and privileged memory 

 Read, write and execute protections by page table entry 

 Internally, the GPU partitions functionality by privilege level 

 User mode compute queues can only run AQL packets 

 User mode graphics command buffers cannot write privileged registers 

 HSA supports fixed time context switching, which is resistant to denial of service (DoS) 

attacks 

 Today’s GPUs are vulnerable to denial of service attacks 

 Long or infinite shader programs 

 Full GPU reset required to restore service 

 With HSA, fair scheduling and context switching ensures a responsive system 

 



RICHER PROGRAMING MODEL SUPPORT  

 

 Support for Today GPU Programing Model 

 Data Parallelism - Embarrassingly Parallel Application  

 SPMD – Single Program Multiple Data Based Application 

 In addition supporting richer set of Parallel Solutions 

 Task-Parallelism, Nested-Parallelism, Braided-Parallelism, 

 Task-graph style algorithms 

 Support for Algorithm that need Inter-task Communication.  

 Application that need exceptions processing 

 



RICHER SUPPORT OF ADVANCED ALGORITHMS  

Computational Photography  

• Feature Extraction 

• Feature Matching  

• Geometric Verification  

• Image Stitching  

• HDR  

• DoF control 

• Lightfield Imaging   

 

Visual Search  
• Feature Extraction 

• Feature Matching 

• Geometric Verification 

Gesture Recognition 
• Image Segmentation 

• Motion Estimation 

• Computation of Geometry ( shape analysis) 

 

Hidden Markov Model acceleration 

Operate on large Markov Random Fields  
  

 



APPLICATION AREAS WITH ABUNDANT PARALLEL 
WORKLOADS 



ACCELERATED WORKLOADS 

CLIENT AND SERVER EXAMPLES 



LOOKING FOR FACES IN ALL THE RIGHT PLACES 

Quick HD Calculations 

Search square = 21 x 21 

Pixels = 1920 x 1080 = 2,073,600 

Search squares = 1900 x 1060 = ~2 Million 



LOOKING FOR DIFFERENT SIZE FACES – BY SCALING 

THE VIDEO FRAME 
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More HD Calculations 

70% scaling in H and V 

Total Pixels = 4.07 Million 

Search squares = 3.8 Million 



Feature l 

Feature m 

Feature p 

Feature r 

Feature q 

HAAR CASCADE STAGES 

Feature k 

Stage N 

Stage N+1 

Face still 
possible? Yes 

No 

REJECT 
FRAME 
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22 CASCADE STAGES, EARLY OUT BETWEEN EACH 

STAGE 22 STAGE 21 STAGE 2 STAGE 1 

NO FACE 

FACE 
CONFIRMED 

Final HD Calculations 

Search squares = 3.8 million 

Average features per square = 124 

Calculations per feature = 100 

Calculations per frame = 47 GCalcs 

Calculation Rate 

30 frames/sec = 1.4TCalcs/second 

60 frames/sec = 2.8TCalcs/second 

 

…and this only gets front-facing faces 
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CASCADE DEPTH ANALYSIS 
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Cascade Depth 

20-25

15-20

10-15

5-10

0-5
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“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz) 

GPU

CPU

PROCESSING TIME/STAGE 

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,  

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1) 

Cascade Stage 
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Number of Cascade Stages on GPU 

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz) 

CPU

HSA

GPU

PERFORMANCE CPU-VS-GPU 

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G, 

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1) 
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HAAR SOLUTION – RUN DIFFERENT CASCADES ON 

GPU AND CPU 

By seamlessly sharing data between CPU and GPU, 

HSA allows the right processor to handle its appropriate 

workload  

+2.5x 

-2.5x 

INCREASED 

PERFORMANCE 
DECREASED ENERGY 

PER FRAME 
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ACCELERATING MEMCACHED 
CLOUD SERVER WORKLOAD 



MEMCACHED 

 A Distributed Memory Object Caching System Used in Cloud Servers  

 Generally used for short-term storage and caching, handling requests that would 

otherwise require database or file system accesses 

 Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others 

 Effectively a large distributed hash table  

 Responds to store and get requests received over the network 

 Conceptually: 

  store(key, object)  

  object = get(key) 
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Key Look Up Performance Execution Breakdown 

Data Transfer Execution

100% 
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0 

OFFLOADING MEMCACHED KEY LOOKUP TO THE GPU 

T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt, “Characterizing and Evaluating a Key-Value Store Application on Heterogeneous CPU-GPU Systems,” 

Proceedings of the 2012 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2012), April 2012. 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209 

Multithreaded CPU Radeon HD 5870 “Trinity” A10-5800K Zacate E-350 
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ACCELERATING B+TREE 

SEARCHES 
CLOUD SERVER WORKLOAD 



B+TREE SEARCHES 

 B+Trees are a fundamental data structure 

 Used to reduce memory & disk access to locate a key 

 Can support index- and range-based queries 

 Can be updated efficiently 

 B+Trees are used by enterprise DB applications 

 SQL: SQLite, MySQL, Oracle, and others 

 No-SQL: Apache CouchDB, Tokyo Cabinet, and others 

 Audio search, video copy detection 
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A simple B+Tree linking the keys 1-7.  The 

linked list (red) allows rapid in-order traversal. 



PARALLEL B+TREE SEARCHES ON HSA 
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By efficiently sharing data between CPU and 

GPU, HSA increases performance versus Multi 

Threaded CPU, even for tree structures that 

reside in host memory. 

M. Daga, and M. Nutter, “Exploiting Coarse-Grained Parallelism in B+Tree Searches on an APU”, Accepted at ”Second Workshop on Irregular Applications: Algorithms and Architectures, (IA3)” November 2012. 

Platform Size <  

1.5 GB 

Size  

1.5-2.7 GB 

Size > 

2.7 GB 

dGPU  
(memory size = 3GB) 

✓ ✓ ✗  

HSA ✓ ✓ ✓ INCREASED PERFORMANCE 

+4x 

With HSA, DB can be larger than GPU 

memory, and can be shared. 

 HSA lets us move compute to data 

 Parallel search can move to GPU 

 Sequential updates can remain on CPU 

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G, 6 compute units, 685MHz; 4GB RAM 



ACCELERATING JAVA 
GOING BEYOND NATIVE LANGUAGES 



JAVA ENABLEMENT BY APARAPI 

Developer creates 
Java™ source 

Source compiled to class files 
(bytecode) using  standard compiler  

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™ 

 
For execution on any 

OpenCL™ 1.1+ capable device 

OR execute via a thread pool if 
OpenCL™ is not available 
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JAVA AND APARAPI HSA ENABLEMENT ROADMAP 
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HSAIL 

HSA-Enabled JVM 

 

Application 

HSA GPU HSA CPU 

HSA Finalizer 

CPU ISA GPU ISA 

HSA Runtime 

LLVM Optimizer 
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Application 
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HSA GPU HSA CPU 
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JVM 

 

Application 

APARAPI 

GPU CPU 

OpenCL™ 

HSAIL 

JVM 

 

Application 

APARAPI 

HSA GPU HSA CPU 

HSA Finalizer 

CPU ISA GPU ISA 



EASE OF PROGRAMMING 
CODE COMPLEXITY VS. PERFORMANCE 



 

Optimized template library routines for common GPU functions 

 For OpenCL™ and C++ AMP, across multiple platforms 

Programming model interface similar to multicore Task Parallel Runtimes (TBB, ConCRT) 

CPU performance as good or better than multicore Task Parallel Runtimes 

Excellent performance and power efficiency on HSA Devices 

For many applications, single source code base for both CPU and GPU ! 

Leverage robust Visual Studio C++AMP debug solution 

 

 

Will appeal to developers not yet on GPU, or porting from CUDA/Thrust 
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LINES-OF-CODE AND PERFORMANCE FOR DIFFERENT 

PROGRAMMING MODELS 

Copy-back Algorithm Launch Copy Compile Init Performance 

Serial CPU TBB Intrinsics+TBB OpenCL™-C OpenCL™ -C++ C++ AMP HSA Bolt  

P
e

rfo
rm

a
n

c
e

 

35.00 

30.00 

25.00 

20.00 

15.00 

10.00 

5.00 

0 Copy-back 

Algorithm 

Launch 

Copy 

Compile 

Init. 

Copy-back 

Algorithm 

Launch 

Copy 

Compile 

Copy-back 

Algorithm 

Launch 

Algorithm 

Launch 

Algorithm 

Launch 

Algorithm 

Launch 

Algorithm 

Launch 

(Exemplary ISV “Hessian” Kernel)  

AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM. 

Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta 
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RESEARCH TOPICS IN HSA 
Category Description Comments 

Languages/Compilers Higher-level languages.  GPU languages are primitive today. OpenCL is a good expert tool. 

Look into domain specific languages (graphics, math).  Ex:  HSA could have a database 

accelerator component  

Split compilation model – high level compliers & low level compilers and how to make them 

work well together  

How to run best on a device with multi ISA’s 

Software Run-Time Classic load balancing.  Look for new ways to partition algorithms automatically in the runtime. 

Simultaneous running of multiple kernels or multiple applications. Quality of service & 

virtualization.  Scheduling for complex status graphs and scheduling dynamic parallelism 

System Architecture • Bandwidth/memory arch (balancing BW with compute) 

• Load balancing 

• Memory configurations: Stack memory devices will eventually appear and systems will 

change around idea of bandwidth. Shared memory stacks – what are the implications? 

• TCU/LCU ratios  

 

Hardware Logical split between split function hardware.  

• Applying HSA to non-GPU devices (DSPs, FPGAs, etc.) 

• Heterogeneous conformance optimization -  how to run a program that runs well on all 

different HSA platforms and hardware 

Memory system design: low cost support for coherency and would give programmers a way to 

optimize their use of coherence 

Security: looking into securing systems 

Efficient synchronization primitives 

3D graphics pipes – integration with HSA 



SOLUTION 

PROBLEM 

THE HSA OPPORTUNITY FOR DEVELOPER 

Developer  

Return 
(Differentiation in  

performance, 

reduced power, 

features, 

time to market) 

 

Developer Investment 
(Effort, time, new skills) 

Good user 
experiences 

 Historically, developers program CPUs 

 HSA + Libraries = 
productivity & performance with low power 

Wide range of 
differentiated 
experiences 

~4M 
apps 

20+M* 
CPU 

coders 

PROBLEM 

Significant 
niche 
value 

 Het. systems hard to program 

 Not all workloads accelerate 

~200 
apps 

~100K 
GPU 

coders 

Few 
100Ks 
HSA 
apps 

Few M 
HSA 

coders 

*IDC 


